
M
W

J 
e W

ee
kl

y J
ou

rn
al

 fo
r S

er
io

us
 M

ac
in

to
sh

™ u
se

rs

maccyclopedia™

may , 
HFS and HFS plus complete
Where have we been? Assembling the longest, most
complex MacCyclopedia™ series ever published. It’s
high time someone bothered to explain HFS and
HFS Plus to people other than file system design-
ers and disk utility authors, and that’s what we’ve
set out to do. It’s a large job because you have to
understand many pieces: trees, special files, binary
searches, clumps, extents, and more, so we take them
one by one until we can build the big picture of the

disk. HFS and HFS Plus are more similar than dif-
ferent, but we show you where the two diverge, and
why. We also explain some other file systems, look
at what HFS and HFS Plus get for being so com-
plicated, and show you why these file systems were
ahead of their times. Unless you owned a Macintosh
before 1986, you’ve always used HFS and HFS Plus,
and now you’ll learn how they work. Blocks laid
bare, page 1.

the HFS primer
everything you ever wanted to know, and maybe more
We’ve been looking at Also’s new DiskWarrior 3
release here at MWJ World Headquarters lately, and
we think it’s just niy. en something odd hap-
pened: we couldn’t find the vocabulary to tell you
why.

Everyone has the short version of what
DiskWarrior does, similar to what Also says on
the product’s Web page: “DiskWarrior is not a disk
repair program in the conventional sense. Instead
of patching the original directory, it uses a pat-
ent-pending technology to quickly build a new
replacement directory using data recovered from
the original directory, thereby recovering files and
folders that you thought were lost and that no other
program could recover.”

So – what does that mean? How does one
“build a new replacement directory,” and why is that
better than fixing problems with the existing direc-
tory? What does “optimizing” a directory mean on
the Macintosh? ese should be relatively simple
questions, but they’re not, because the two main disk
formats on the Macintosh – HFS and HFS Plus – are
shrouded in myth and intrigue, despite being well
documented.

Simply put, HFS and HFS Plus use complicated
data structures that puzzle many programmers,
much less the average non-programmer. Answers

to HFS questions may involve phrases like “thread
record” or “extents overflow tree” that have no intui-
tive meaning. And yet nearly every Macintosh user
boots from an HFS or HFS Plus disk. Even the Unix
fans that are so fond of UFS in Mac OS X typically
boot from HFS Plus because parts of Carbon still
require it. HFS and HFS Plus are probably the least
understood of the widely-used Macintosh technolo-
gies because they defy simple explanation.

We decided that shouldnʼt stop us.
The more we tried to explain parts of HFS and

HFS Plus to put DiskWarrior in its proper context,
the more we realized that people other than pro-
grammers could benefit from understanding how
their disks are organized. These are complicated
concepts, and they may take more than one reading
to sink in. They certainly did for us. But as usual,
when youʼre not worried about most of the byte-
level details and look at the bigger picture, you can
understand the basics of HFS and HFS Plus, as well
as why theyʼre so intricate.

What we explain in this issue wonʼt teach
you how to write a disk repair program, or how
to fix damaged disks in a block editor. It should
be enough for you to understand what disk repair
programs do, how they do it, and how a disk is sup-
posed to function. HFS and HFS Plus are 2 u

http://www.alsoft.com/DiskWarrior/index.html

M
W

J 2
00

3.
05

.2
5

2 3

M
W

J 2003.05.25

powerful file systems, and like every other file sys-
tem, theyʼre all about organizing data on disk, so our
story begins with the disks themselves.

block party
Today’s disks are designed to deliver lots of data fast.
Need 30MB transferred every second to keep up
with streaming video and audio? No problem: today’s
hard drives communicate through ATA and the PCI
bus, in conjunction with the host computer, to deliver
data via direct memory access, or DMA. rough
this significant bit of serious voodoo magic, the hard
drive winds up putting data into the RAM chips
where it’s wanted – no reading it into the kernel and
copying it to an application address space or any of
that garbage.

Unfortunately, sometimes it’s about very little
data. For example, since Apple changed applications
to be packages instead of single files, there’s no easy
way to store the application’s file type and creator
type. Directories don’t have such metadata, because
every directory is the same “kind” – a directory – and
was created by the operating system to hold other
files. It’s not like some directories really hold some-
thing else, like pixels, or maybe pudding. Apple’s first
recommendation was for each application package to
store the information in a “Contents/PkgInfo” file
that’s exactly eight bytes long: the four-byte file type
followed by the four-byte creator type. (Apple has
since deprecated the PkgInfo file – it’s still allowed
but is no longer required, as file type and creator type
information for applications must now be found in
the package’s Info.plist file.)

DMA is overkill to transfer eight bytes of data.
In fact, that’s one of the problems of disk storage:
transfer rates aren’t so bad once everything’s going,
but getting started is painful. e operating system
has to figure out exactly where on disk the informa-
tion is located, spin the drive up to speed if it was at
rest, move the mechanical reading head to the ap-
propriate position, wait for the right spot to come
around, and read the data. Writing is just as bad,
except slower.

counting blocks

It’s plainly unacceptable to go through all this work
just to pull eight bytes from disk, or worse, to pull
four bytes from disk and then have to do it again for
the next four bytes. If you’re going to go to the disk

for a few bytes, you might as well get a few more just
in case you’re going to need them, because the pen-
alty for not doing so is just too great. In the days of
5.25-inch disks, the quantum was one sector on the
disk – 256 bytes. e 3.5-inch disk raised that to 512
bytes, and thanks to both compatibility concerns and
natural technical inertia, hard disk makers adopted
the same quantum, typically called a block.

You have to work hard to find a Mac-compatible
disk drive that can read less than 512 bytes at a time.
If you ask the operating system for four bytes from a
file, the device driver reads the entire 512-byte block
containing those four bytes, but the OS returns only
the four bytes you wanted. If you then ask for the
next four bytes, the OS already has them buffered if
they were in the same block. If not (perhaps the first
four bytes were at the end of a block), the OS has to
go back to the disk to get the next block of the file.
at’s why many of today’s hard disks actually read
more than the operating system requests, caching it
on the disk controller in a megabyte or two of fast
cache RAM – even if the OS only requests one block,
the disk might read several blocks at once, just in
case the OS isn’t smart enough to make the best use
of the drive’s capabilities.

Even so, the disk quantum is the block – you
can’t read or write less than one block. Bytes 0
through 511 on the disk are in block 0, bytes 512
through 1023 are in block 1, and so on. Bytes 2
through 513 are in two blocks, even though that’s
only 512 bytes total: blocks start and end on mul-
tiples of 512 bytes on the disk. No matter how an
operating system organizes a disk into files or parti-
tions, the drivers that actually talk to the disk read
and write exclusively in block multiples.

Most drivers today are pretty smart. If they
know they want 10MB of contiguous data from the
disk, they’ll make one request for 20,480 blocks and
let the drive and controller work DMA magic. e
stupid way is to make 20,480 requests for one block
each, introducing lots of unnecessary overhead. It’s
one of the rules of modern computer programming:
ask for what you want, not what you think you can
get. Let the OS surprise you if it can. You can always
fall back to a more modest request, but most of the
time, the OS does that for you.

partition erudition

As far as the disk itself and the ATA controller are
concerned, a disk is nothing but one big pile of

t 1

http://developer.apple.com/techpubs/macosx/Essentials/SystemOverview/Bundles/chapter_5_section_3.html

M
W

J 2
00

3.
05

.2
5

2 3
M

W
J 2003.05.25

blocks. All modern Macintosh operating systems,
however, treat a disk as more than that. e first
several blocks of any modern Macintosh hard disk
contain a partition map dividing the disk into dis-
crete partitions. One such partition contains the
partition map itself; others usually contain Mac OS
9 drivers for the hard disk (perhaps an ATA driver,
perhaps a SCSI driver) that the operating system is
free to use or ignore. One or more of the partitions
contain what regular, non-nerd people consider to be
a “disk” – a volume that shows up on the desktop or
in Mac OS X’s “/Volumes” directory.

You might partition an “80GB” hard disk (more
like 74GB when formatted) into two 36GB volumes.
In that case, you’d probably have partitions for the
partition map, a few drivers, both 36GB volumes, and
an “Apple Free” partition with the remaining 1GB to
2GB of space you didn’t use anywhere else. e disk’s
drivers take care of these details, telling higher-level
portions of the operating system that your particular
piece of hardware is in fact, two “disks” of 36GB each.

In fact, if you’re a total Unix nerd, you probably
already know that under Mac OS X, “/dev/disk0”
is your entire first hard disk (including the partition
map), and “/dev/disk0s1” and other devices start-
ing with “disk0” are the partitions on that disk, ex-
cluding the partition map itself. In our example, only
two of those will show up as disks with mountable
file systems. Rainer Brockerhoff’s US$10 XRay can
show you the Unix device for any mounted volume,
if you’re interested.

As far as anything higher-level than a device
driver is concerned, each of these partitions is really
a separate device, because the device driver said it’s
so. e first block of your primary HFS Plus partition
might be block 16,384 on the disk, but it’s “block 0”
of the partition. When we refer to blocks on a “disk,”
we mean on a volume – a single partition of any hard
disk that has a partition map, and nearly every hard
disk does.

a simple file system
Once all the driver and volume mess is resolved,
there remains the question of how data is organized
on the disk. If the OS can’t keep track of the blocks
that a file occupies on the disk, it can’t ever find the
file again, and most people don’t want write-only
disks. e data of each file – or of each file’s fork – is
typically stored as the entire contents of a series of
blocks on disk. at is, a 2048-byte file takes the en-

tire space of four blocks on disk, with no extra struc-
ture or file system information stored within those
four blocks.

Some file systems, including the hot new Linux-
friendly ReiserFS, try to take advantage of unused
space in a block, such as by storing a 400-byte file
and an 8-byte file in the same 512-byte block. So far,
Apple’s file systems are not among these. In today’s
economy, a few hundred bytes of hard disk space are
much cheaper than the thousands of hours of writ-
ing and debugging such byte-wringing file systems
require, not to mention the bills for headache pills
and padded rooms for overworked programmers.
e ReiserFS folks deserve credit for getting it done,
because it’s no small task.

Some of Apple’s file systems have been elegant
in their simplicity and limitations. e ProDOS file
system was a stalwart of the Apple II line from 1984
onward. It originally appeared as the SOS file system
for the Apple III in 1981, but the Apple II version
had a lot more users, so more people know them as
“ProDOS disks” than as “SOS disks.”

ProDOS’s organization is deceptively simple.
Each file’s directory entry contained a storage type
and a pointer to the file’s key block. A file less than
512 bytes long needs only one disk block, so the key
block for such files points to the one and only data
block. Most files need more than one block, and in
those cases, the key block points to an index block
that, in turn, contains the block numbers of the file’s
data blocks. If a program needs data from the tenth
block of the file, the operating system goes to the
index block and finds the tenth entry in it – the block
number of the tenth block of the file. e algorithm
is so easy you could duplicate it in a few lines of
AppleScript.

ProDOS used two-byte block numbers, so each
512-byte index block can point to 256 data blocks.
at’s enough to accommodate a file of 128KB, which
wasn’t bad in days of 140KB floppy disks. If you
needed a larger file, ProDOS added one more level of
indirection: the key block became a master key block
that pointed to up to 256 index blocks, each of which
pointed to up to 256 data blocks. at was enough
for a 32MB file, but since ProDOS elsewhere im-
posed a three-byte limit on file lengths, no file could
be larger than 16MB anyway. e storage type field
in each directory entry told ProDOS which of these
three formats the file used, from a small file with no
index block to a huge file with a master index block.

4 u

http://www.brockerhoff.net/xray/index.html
http://www.namesys.com/content_table.html

M
W

J 2
00

3.
05

.2
5

4 5

M
W

J 2003.05.25

Without that hint, the operating system would have
no idea what the key block meant.

Directories used a linked list instead of the tree-
like structure employed for data files. Each directory
block contained exactly thirteen directory entries,
with the very first entry holding information about
the directory itself. Each directory block also held
the block numbers for the next and previous blocks
in that directory. e volume’s root directory always
occupied blocks 2 through 6, so any code reading a
ProDOS disk always knew how to find any file: start
at block 2, find each subdirectory entry, follow it to
that subdirectory, and repeat until you find the entry
for the file itself. (Useless trivia: block 0 on a ProDOS
disk contains Apple II boot code; block 1 typically
contained Apple III boot code.)

e ProDOS file system is simple enough for
non-programmers to understand, though not neces-
sarily on first reading, but it’s also limited. Individual
files are capped at 16MB, as mentioned, and ProDOS
disks can be no larger than 32MB. at’s because
every block number had to fit in two bytes, allowing
a maximum of 65,536 blocks at 512 bytes (0.5KB)
each, a total of 32MB. Directory entries were also
fairly small, permitting only fieen character file
names with a one-byte file type and two-byte “auxil-
iary type” that Apple later had to use as an extension
of the file type. ere was no room for non-ASCII
names, creator types, creation or modification times
more specific than the nearest minute, or any of
those finer points of modern disk life.

Also, since the volume directory was limited to
four blocks of 13 entries each (minus one to describe
the volume itself), the root directory was strictly lim-
ited to 51 entries. e root directory could not grow
because block 6, the next block, was reserved for the
start of the volume bitmap – a series of up to sixteen
blocks (65,536 bits) with one bit for each block on
the disk. If the bit corresponding to a given block is 1,
the block is in use; if the bit is 0, the block is available
for other use. It’s how ProDOS knows where to find
free blocks for use in new and growing files, but its
absolute position hamstrings the volume directory at
51 entries. Imagine trying to live with that restriction
today.

enter HFS

e engineers who designed the file system for
Apple’s next big computer, the Macintosh, were de-
termined to use their larger 3.5-inch disks to make a

bigger and better file system. Longer file names, more
metadata for the system’s use, more flexibility, the
whole nine yards. eir first attempt was not entirely
sufficient: MFS, the Macintosh Filing System, was a
flat-file system with significant limitations. Although
you could create “folders” in the Finder, they weren’t
really folders: every file on an MFS disk was really
stored at the root level. e Finder and the “Open…”
and “Save As…” dialog boxes faked the presentation
of folders. It didn’t take two years before Apple real-
ized that MFS would be way too slow. It’s best not to
discuss MFS too much; it’s a touchy subject in some
quarters.

Such lessons did inform engineering decisions
for the next Macintosh file system, the Hierarchical
File System, better known as HFS.

Take that bit about directories, for example.
ProDOS directories are simple lists of linked blocks,
easy to understand but hard to use. If you want to
open a file in a directory containing 4000 entries, a
ProDOS-compatible operating system would have to
look at every directory entry and see if it was for the
file in question. If it finds the file, it opens it. If not,
it keeps going until it runs out of directory entries.
Again, that’s quite simple, but examining an average
of 2000 entries before finding any file, or examining
4000 entries before returning “file not found,” is way
too painful for everyday use.

It doesn’t have to be that way. Suppose you’re
asked to guess a pre-determined number between 1
and 4000. As long as the other person agrees to tell
you if your guess is correct, too high, or too low, you
can find the correct number in no more than twelve
guesses – every time. You may already know how, too.
Make your first guess exactly halfway in the available
range, and each time you’re wrong, discard the half
of the range you know does not contain the answer.
If you guess 2000 and you’re told it’s too high, you
know the answer isn’t between 2001 and 4000, so
throw that half away. en guess halfway in the new
range – at 1000 – and repeat until you get it right.

Because each guess discards half of the avail-
able choices, finding the right answer from N options
takes, at most, log2 N attempts, rounded up to the
nearest integer. For a sample of 4000 options, log2
4000 = 11.97, so you can always get the number in
12 attempts. Without the “higher” or “lower” hints,
finding a random number out of 4000 would, when
averaged over time, take about 2000 guesses. e dif-
ference between 2000 tries and 12 tries to find a file
in a directory is a huge win if it can be done.

t 3

http://developer.apple.com/techpubs/mac/Files/Files-99.html

M
W

J 2
00

3.
05

.2
5

4 5
M

W
J 2003.05.25

is algorithm is called a binary search, and
to make it work, you have to know if any directory
entry you look at is “higher” or “lower” than the one
you want. at’s why it can’t work with ProDOS,
where the directory entries are in no specific order.
e operating system has to know the order of files
in a directory or it can’t judge whether the sought-
aer file should come “before” or “aer” the entry
it’s examining, the logical equivalent to “higher” or
“lower.” Basically, the directory must be sorted, at
least enough to be able to read it in order.

Sorting a ProDOS-style directory is out of the
question: adding a file whose name starts with “M”
to the middle of a 4000-entry directory would mean
moving 2000 entries “down” by one to make room
for the new file, and that’s worse than 2000 searches.
Apple’s HFS designers solved this problem by storing
the catalog in a data structure specifically designed
for binary searches.

the joy of trees
A classic binary tree is, in effect, a pre-completed
binary search. e root node of the tree contains the
middle value of the data set. If the value you’re look-
ing for is less than that, you branch le; otherwise,
you branch to the right. When you get to the next
node, you again compare its value to the value you
seek, branching le or right and continuing until
you either find the value you want or you run out of
nodes. It works because the nodes are sorted: if you
read the nodes in a tree diagram from le to right
(using the le edges) regardless of the tree level, you
get all the values in order. Figure 1 shows the first
three levels of a standard balanced binary tree for our
“guess the number between 1 and 4000” game. Note
that by following the tree to the le or right at each

node, you don’t need any computation at all to find
the result: just keep going until you reach the end or
find your value.

You may be thinking, “What a huge waste of
time! Why spend effort to build a data structure that
essentially saves you one division-by-two opera-
tion?” It turns out that our guess-the-number game
is a bit of a convoluted example. If you already know
the data is 4000 consecutive numbers in order, you
wouldn’t have to search hard at all to find one of
them. But what if you only have fieen items with
values somewhere between, say, 1 and 500,000,000?
If you start guessing at 250,000,000, a binary search
guarantees you’ll find any value in 29 or fewer steps,
but if you only have 15 values in the first place, that’s
a huge waste of time.

Figure 2 shows a balanced binary tree with 15
random values between 1 and 500,000,000. As you
can see, since there are only 15 entries, it takes no
more than log2 15 (rounded up, that’s 4) attempts to
either find any entry in the tree or know that it does
not exist. For any random value, it may take all four
attempts to discover it’s not there, because only four
out of five hundred million possible keys exist in the
tree. Even so, four is a lot better than fieen or twen-
ty-nine comparisons for the same results.

at’s why binary tree variants work well for
HFS and HFS Plus. e set of all possible HFS Plus
file names is the set of all possible Unicode text val-
ues between 1 and 255 characters (up to 512 bytes),
and there may not be enough disk space on the plan-
et to hold that huge set of possibilities. We already
saw how simple data structures like linked lists aren’t
suitable for large directories, but raw binary searches
aren’t suitable when the data could have a huge num-
ber of values. Binary trees strike the necessary com-

6 u

1000 3000

2000

500 1500

250 750 1250 1750

2500 3500

2250 2750 3250 3750

  –  “  ” 

M
W

J 2
00

3.
05

.2
5

6 7

M
W

J 2003.05.25

promise, providing fast searches of large or small sets
of data with huge ranges.

keeping your balance

e trade-off? Higher maintenance. e structures
in our examples are actually balanced binary trees:
every node has zero or two children that have their
own children all the way to the bottom of the tree,
and the middle value is in the root node of the tree. If
a binary tree isn’t balanced, there’s no guarantee that
half of the possible child values are on either side of a
particular node. For example, if file names could start
with the letters “A” through “Z,” the root node of an
unbalanced tree could be a file starting with “A.” Most
other files would fall on the right side of such a tree.
In the worst case scenario, searching an unbalanced
binary tree could require examining every single
node, though it’s usually faster than that.

Only a balanced tree guarantees finding a result
out of N entries in log2 N or fewer tries, and that’s
why Apple’s engineers chose these balanced trees
to store the catalog on an HFS disk. e problem is
that the tree has to stay balanced, so adding any new
node may force relinking much of the tree. Figure 3
shows what happened to the tree in Figure 2 when
we replaced two numbers with others that fell in a
different place in the sort order. Although only two
numbers changed, eleven of the fieen nodes in the
tree “moved” to different positions because the sort
order changed, including the entire le half of the

tree because one of the new numbers was less than
the previous smallest value in the tree. Moving a few
thousand entries in a large tree can be some serious
work, and that’s the trade-off for fast searches of large
data sets.

It’s full of stars!

HFS and HFS Plus use a slightly different kind of
tree, called a B*-Tree, that has three more important
properties. In our sample diagrams, each node has
only one record (a number), but in B*-trees, each
node has multiple records. If a node had two records,
like the numbers 15 and 29, the search algorithm
would go “le” if the sought value was less than 15,
“right” if it was greater than 29, and “down” if it was
between 15 and 29. at’s right– a node with N re-
cords has N+1 children, so a two-record node points
to three children. Storing more records in one node
makes it easier to rebalance the tree, as much of the
time you can simply add another record to an exist-
ing node to avoid much of the nasty work.

Just in case that was too easy to understand, HFS
and HFS Plus make it more difficult: an HFS or HFS
Plus B*-tree node with N records has N children, not
N+1. Why? Because in a move everyone finds odd,
HFS-style B*-trees never point le. Or, more techni-
cally, “in a given subtree, there are no keys less than
the first key of that subtree’s root node.” If the search
algorithm gets to a node with two records, like the
numbers 15 and 29, it knows that the value it seeks is

136,192,824 417,881,397

257,529,007

71,446,330 197,993,779

30,927,523 100,468,440 154,752,660 250,046,104

356,583,180 499,604,957

304,855,337 358,522,388 444,220,475 515,132,949

  –       

100,468,440 444,220,475

250,046,104

30,927,523 154,752,660

15,394,413 71,446,330 136,192,824 197,993,779

356,583,180 502,396,244

304,855,337 358,522,388 499,604,957 515,132,949

  –  , 

t 5

M
W

J 2
00

3.
05

.2
5

6 7
M

W
J 2003.05.25

either between 15 and 29 or greater than 29. If it were
less than 15, the algorithm wouldn’t have arrived at
this node.

at variant is unique to HFS-style B-trees, but
all B*-trees share the final characteristic: only the
leaf nodes at the very bottom of a B*-tree contain
the actual data you want. All the other nodes higher
in the tree contain only index nodes that eventually
point to a leaf node. For example, a file’s directory
entry contains more than the file name: it has the file
type, creator type, modification dates and times, and
the information pointing to the file’s data blocks. In
an HFS-style B*-tree, all that information is found
only in the leaf nodes at the end of the tree. Every
other node just has a filename and a pointer to either
another index node for that file or to the file’s real
leaf record.

Figure 4 shows a B*-tree much more like what
HFS and HFS Plus actually use. ere are multiple
records in each rectangular node, and only the leaf
nodes at the bottom of the tree contain actual data
records (still indicated by circles). e root node
and second level are just index nodes – their only
purpose is to point to other nodes and further the
search. Since HFS-style B*-trees never point “le,”
we arranged Figure 4 to emphasize that each node
contains no children with values smaller than its
own smallest value. at requires every index level
to repeat the lowest-numbered value that pointed to
it, and requires the root node to start with the low-
est-numbered value in the entire tree. Otherwise,
at some point, the algorithm would have to branch
“le.”

It sounds confusing but makes searching sim-
pler. In each node you find, starting with the root
node, you find the record with the greatest value

that’s still less than or equal to the value you’re seek-
ing. You then go where that record points and repeat
the process until you reach the leaf nodes at the
bottom of the tree. At that point, you either find the
value you want or know that it’s not in the tree at all.

Note that one of the leaf nodes in Figure 4 con-
tains three records even though the others contain
only two. at’s fine – Apple requires every node in
an HFS-style B*-tree to be large enough to hold at
least two records, but it can contain more. HFS Plus
defaults to 4KB per node, easily enough to hold two
records of full 512-byte Unicode file names, usually
many more with typical names. (On a test iMac, we
found about fiy records in most index nodes.) You
might get the tree in Figure 4 if “49” was the last leaf
record added to the tree: it would be far easier to just
add it to the node where it’s shown than to create a
new node and rebalance the tree. Had the algorithm
added “49” to the third leaf node instead of the
second, it would have required changing the index
nodes valued “51” at both higher levels of the tree
to instead point to “49,” and that’s more work than
necessary.

At some point, however, nodes fill up. When that
happens, the file system implementation must cre-
ate a new node and move some of the existing data
into it, careful to keep everything sorted from “le to
right” in each node and, in fact, in each level of the
tree. at’s one reason Apple uses B*-trees: moving
and splitting a bunch of index nodes is easier than
moving and splitting a bunch of leaf nodes. Every
index node contains its index value (like the numbers
49 and 51 in our example) and a pointer to its child
node that’s no more than the number of the child
node. It’s a lot easier to rearrange a bunch of values
and node numbers than to rearrange all the other

3 51

51 803 32

3 17 51 72 80 9232 46 49

  –  - *-

8 u

M
W

J 2
00

3.
05

.2
5

8 9

M
W

J 2003.05.25

data that might be associated with an actual value,
like a file’s full directory entry.

Some people say that a B*-tree is not a variant
of a binary tree because each B*-tree node can have
more than two children, and a true binary tree has
only either zero or two children per node. Other
people disagree, but since the National Institute of
Standards and Technology sides with the zero-or-
two definition, we’ll accept it. Most of the diagrams
in Part 1 had two children per node, but that doesn’t
mean the B*-trees are binary trees. NIST calls them
k-ary trees, a term we find needlessly confusing when
“trees” works quite nicely.

the catalog file
e difficulty of moving nodes and values around de-
pends in large part on how the information is stored
on disk. Tree diagrams demonstrate the concepts,
but it’s not like your hard disk has separate levels of
blocks for parts of a tree – everything is just a block.
Actually, to HFS and HFS Plus, storage is parceled
out in chunks called allocation blocks, a multiple of
512-byte disk blocks. at’s one reason HFS Plus be-
came necessary. Just as ProDOS volumes are limited
to 64K of 512-byte blocks (that’s 65,536 of them), an
HFS disk is limited to 64K allocation blocks.

To make volumes larger than 32MB, HFS has to
increase the allocation block size – a 64MB volume,
for example, has allocation blocks of 1KB each (two
512-byte blocks). Alas, by the time you get up to a
74GB volume on one of today’s 80GB hard disks,
HFS would require an allocation block size of over
1MB. at means you take a full 1MB of disk space
for each of those eight-byte PkgInfo files, because
HFS can’t allocate less than one allocation block of
disk space. HFS Plus allows for 4MB worth of allo-
cation blocks, or 4,294,967,296 of them. By default,
HFS Plus uses 4KB allocation blocks, even on vol-
umes that could use smaller ones, because Mac OS X
uses 4KB buffered disk input and output, and trans-
fers a 4KB chunk of data more efficiently than any
smaller size.

But every allocation block is created equal
– none is any better than any other, and the main
purpose of allocation blocks is to combine to make
files. In fact, all the nodes in the tree for an HFS
or HFS Plus disk’s catalog are stored in one big file
called – wait for it – the catalog file.

e location of the catalog file itself is hard-
coded so you don’t have to find the catalog file to find

the catalog file. Both HFS and HFS Plus disks contain
a structure in block 2 of the volume that defines the
volume’s characteristics; we’ll talk more about it later,
but one of the things it tells you is where to find im-
portant HFS and HFS Plus data like the catalog file.

what is a node?

e format of a text file is pretty easy: every byte is
text. Binary files have more complicated structures,
and the B*-tree in the catalog file certainly qualifies
as “binary” and “complicated.” However, given what
you’ve already learned, it’s not so bad. e catalog
file is grouped into nodes, just like the tree. e size
of an HFS Plus node is determined when the disk is
initialized, and the length must be a number of bytes
that’s a power of two with an exponent between 9
and 32, inclusive (that’s a power-of-two block size be-
tween 512 bytes and 32,768 bytes, or 0.5KB to 32KB,
inclusive). HFS nodes are always 512 bytes, but HFS
filenames are never longer than 63 bytes (31 charac-
ters, possibly two bytes each in non-Roman writing
systems), so a 512-byte node holds more HFS file
names.

Each node begins with a 14-byte node descriptor
that, in another display of plain language, describes
the node. e file system implementation needs to
know several things about each node, including what
kind of node it is (such as an index node or a leaf
node – each node contains only one kind of record,
so the kind of records defines the kind of node), how
many records it contains, what depth the node is in
the B*-tree, and where to find the next and previous
nodes of the same kind.

is information is how the file system imple-
mentation finds other index nodes when it’s time to
rebalance the tree. Individual records only point to
child nodes, but each node’s own structure contains
forwards and backwards pointers to other nodes of
the same kind, such as other index nodes or other
leaf nodes. If a node needs to be split, the algorithm
doesn’t have to walk the whole tree to find the node
with the next highest values at the same level. Each
node already has that information, as well as the next
lowest values at the same level. In Figure 4, for ex-
ample, that means each of the third-level leaf nodes
knows the node number of the node to its le and
right. If the algorithm needed to move the leaf record
with value “49” from the second node to the third,
it knows the number of the third leaf node without
searching for it.

t 7

http://www.nist.gov/dads/HTML/binarytree.html
http://www.nist.gov/dads/HTML/binarytree.html
http://www.nist.gov/dads/HTML/karyTree.html

M
W

J 2
00

3.
05

.2
5

8 9
M

W
J 2003.05.25

Aer the node descriptor, each node contains
as many records as fit. In a characteristic HFS-style
fashion, the two bytes at the very end of the node
point back to the location of the first record in the
node, always at byte 14. e two bytes just before that
at the end of the node point to the second record in
the node, and so on, with records building from the
front to the middle of the node, and pointers to the
records within the node building from the end back
towards the middle. at leaves the biggest set of free
space in the middle of the node in one chunk. If a
record gets deleted from a node, the implementation
must compact the other records to maximize the free
space.

Figure 5 shows this arrangement in a diagram
freely extrapolated from Apple’s developer documen-
tation. It also shows that every node has N records
and N+1 pointers, because the N+1st pointer points
to the beginning of the free space in the node, pre-

venting an implementation from having to calculate
where it is.

storing the nodes

e HFS or HFS Plus catalog file is just a bunch of
these nodes. Just as each node contains a header
explaining what’s in the node, every B*-tree file – in-
cluding the catalog file – contains a header node that
describes the entire B*-tree structure, including in-
formation like the size of each node and what nodes
in the tree are currently in use, just as each node
knows what records within it are available or oc-
cupied. e header node knows how deep the entire
tree is, the number of the root node where searches
start, and everything else the algorithm needs to
search and find any record in the tree.

An empty catalog file starts with a slew of empty
nodes waiting to be filled, pre-allocated to help re-
duce fragmentation. As you create files, these nodes
fill up. When every node in the catalog file is full, the
HFS or HFS Plus code grows the file and allocates
more nodes. Each node’s number is determined by its
position within the catalog file, so once a node is cre-
ated, it doesn’t move on disk. It shis positions in the
tree depending on the values in other nodes, and it
may be full of records or have nothing but free space,
but node #1 stays node #1 forever, no matter where
it is in the tree, what records it contains, or even if it’s
in use at all.

If a node’s number changed, the implementation
would have to walk the entire tree and change every
reference to that node. at’s not how B*-trees work.
Each node knows its own children, but does not
know what other nodes point to it. Since any node
can have any logical position in the tree at any time,
the implementation doesn’t have to do the nasty
work of relocating nodes, just relinking them. Any
node can be the root node, for example: whatever
node is listed in the header node as the root node
is the root node. If rebalancing the tree needs to
change that, the implementation doesn’t empty out
the old root node and move in new records – it takes
the node number for the new root node and stashes
it in the header node.

When the catalog tree gets very large, logically
consecutive nodes could be spread out over several
blocks on the disk. Both Mac OS 9 and Mac OS X try
to cache as much of the catalog file in RAM as pos-
sible, but a hard disk’s catalog file could take 20MB or
more of disk space, and that’s too much RAM for the

Node descriptor

Record 0

Record 1

Record 2

Free space

Pointer to free space

Pointer to record 2

Pointer to record 1

Pointer to record 0

  –  

10 u

M
W

J 2
00

3.
05

.2
5

10 11

M
W

J 2003.05.25

OS to spend on cache on most systems. e operat-
ing systems also work to minimize fragmentation by
allocating space for the catalog file in clumps large
enough to hold hundreds of nodes and thousands of
files at once.

Still, it’s possible that a deep tree search could
wind up jumping between multiple catalog file frag-
ments on the disk. e good news is that even on a
hard disk with a huge number of files, like 500,000,
the B*-tree guarantees the search algorithm will find
what you’re looking for in 19 or fewer hops between
nodes. Experts say that most HFS Plus disks with
regular use rarely have a catalog file with more than
three or four fragments, though the repeated relink-
ing of nodes in the tree could make the disk head
jump back and forth several times in a single frag-
ment.

the vermicious CNID

A record in a B*-tree contains a key and data, or in
terms you may recognize from Mac OS X property
lists, a key and a value. You use the key to find the
record so you can access the data you want. Our dia-
grams have used integers for keys, and we’ve implied
that the real keys in HFS-style B*-trees are the file-
names. at’s not quite true: the keys are CNIDs and
filenames concatenated together.

CNID stands for catalog node ID, but everyone
uses the abbreviation because the number is not the
ID of a catalog node, though once upon a time it
might have been. e CNID is a unique four-byte
number between 16 and 4,294,967,295 (or, in hexa-
decimal, between 0x10 and 0xFFFFFFFF). Each
CNID has historically been unique per disk: if you
delete the file or folder with CNID 1575, no other file
or folder on that disk can ever have CNID 1575. e
next available CNID is tracked in the volume infor-
mation in block 2 in a field named nextCatalogID.
CNID values are typically assigned sequentially to
avoid gaps since they can’t be reused.

Until Mac OS 9.1, if you created and deleted so
many files that you reached CNID 4,294,967,295,
you’d exhausted the disk and could never create
another file or folder on it. You’d have to back it up,
erase it, and restore it. Erasing the disk resets the next
file to use CNID 16, and each file you restore gets a
new, low CNID as it’s created. Fortunately, the larg-
est CNID is so big that you could create and delete
100,000 files on an HFS Plus disk every day for over
seven years before reaching the limit.

Starting in Mac OS 9.1, though, Apple says that’s
no longer true for HFS Plus. At that time, Apple de-
fined a previously-reserved bit (bit 12) in the HFS
Plus volume header, saying that if it was set, the vol-
ume might have recycled CNIDs on it. (is is the
same way Apple indicates that Journaled HFS Plus
is active in Mac OS X 10.2.2 and later – journaling is
active when bit 13 of the volume attributes is set, and
CNIDs may be reused if bit 12 is set.)

e documentation was a warning for disk util-
ity developers. Since CNID numbers are assigned
sequentially, nextCatalogID should be greater
than the value of any CNID already on the volume.
With bit 12 set, that may not be true. e next CNID
value may have wrapped around to low numbers
when lots of big-value CNIDs are already assigned to
files. Apple writes, “A disk repair utility that sees [bit
12] set should not complain if it finds a CNID larger
than nextCatalogID already in use.”

We’ve considered this carefully aer failing to
mention it in MDJ when this series first ran, and
firmly believe that this feature, as implemented in
Mac OS 9.1, is actually a bug. None of this is men-
tioned in the official HFS Plus Volume Format
documentation, but then again, neither is journal-
ing – six months aer users got their hands on it.
at’s unimportant compared to the documented
rules for changing anything important in HFS Plus.
Another field in block 2 of HFS Plus disks, last-
MountedVersion, is a four-byte value that tells
anyone reading an HFS Plus disk that the rules may
have changed.

To quote the HFS Plus documentation, “It is very
important for implementations (and utilities that
directly modify the volume!) to set the lastMount-
edVersion. It is also important to choose different
values when non-trivial changes are made to an
implementation or utility. If a bug is found in an im-
plementation or utility, and it sets the lastMount-
edVersion correctly, it will be much easier for other
implementations and utilities to detect and correct
any problems.” e initial value for lastMounted-
Version was ‘8.10’ (for Mac OS 8.1). It changed to
‘10.0’ under Mac OS X, and to ‘HFSJ’ when journal-
ing is active. In fact, lastMountedVersion is how
Journaled HFS Plus knows if some non-journaled
version of HFS Plus mounted a disk that had a valid
journal on it. If Mac OS X 10.2.2 or later mounts
a disk that has a journal but lastMountedVer-
sion is not ‘HFSJ’, it knows that some other code has

t 9

http://developer.apple.com/technotes/tn/tn1150.html

M
W

J 2
00

3.
05

.2
5

10 11
M

W
J 2003.05.25

been using the disk, and it ignores the journal (MWJ
2002.11.18).

e problem is that lastMountedVersion did
not change when Apple started reusing CNID values
in Mac OS 9.1. Such reuse had always been illegal
in both HFS and HFS Plus, and any properly-writ-
ten disk utility would have seen a reused CNID as
a proper sign of a damaged volume. But if that’s the
case, the lastMountedVersion should not have
been ‘8.10’, because that tells all implementations
and utilities that the rules for the disk are the same
as they were under Mac OS 8.1, as documented in
Technical Note #1150. Under those rules, any reused
CNID is a problem and should be fixed, not tolerated.

Apple has the right to change HFS Plus as it
sees fit, but under the rules Apple still maintains, it
is “very important” that any “non-trivial changes” be
accompanied by a new value for lastMountedVer-
sion so all HFS Plus code knows what’s going on.
Had Apple done that, perhaps with a value like ‘9.10’
for Mac OS 9.1, everything would be fine. Everything
is fine if lastMountedVersion is ‘10.0’ or ‘HFSJ’
or anything past ‘8.10’, because any other value
signals to any interested code that something has
changed. But to say that values that have always been
illegal are now allowed without changing the very
field designed to pass that information along? at’s
a bug.

Nonetheless, the HFS Plus implementations
in Mac OS 9.1 and later can and do reuse CNIDs if
bit 12 of the volume attributes is set, even if last-
MountedVersion hides that with an incorrect value
of ‘8.10’. With this bit set, an HFS Plus disk is not
full until it either runs out of storage space or until
it holds more than 4,294,967,280 files, give or take
sixteen or so.

The value of IDs

You may have heard about file IDs or folder IDs on
HFS and HFS Plus volumes. On the disk, those are
the CNID values. ey’re why Mac OS aliases have
always worked so much better than Unix symbolic
links or Windows shortcuts. ose non-Macintosh
files refer to their targets solely by full pathname, so
if you move or rename the target file, a symbolic link
or shortcut breaks. CNIDs are permanent for each
file and folder leaf record, so even if you rename the
file or change any other information about it, the
CNID stays the same. at’s why as long as you leave

a file on the same volume under Mac OS 9, an alias
pointing to it always finds it.

By the way, in Mac OS X 10.2 and later, aliases
resolve by full pathname first and only second by
CNID. at’s probably an improvement. If you throw
a file away and replace it with a new one in the same
place with the same name, Mac OS X 10.2 resolves
an alias to the original file by finding its replacement.
Mac OS 9 finds the original file in the Trash.

e CNID is important in the catalog file be-
cause the key for finding any given file or folder is
its parent folder’s CNID concatenated together with
the file or folder’s name. So, for example, if an HFS
Plus file system implementation searched for a folder
named “Library” whose parent folder had CNID of
65,536, the search key in the catalog B*-tree would be
the four byte value 65,536 (0x00010000) followed
immediately by the Unicode text “Library”. (In an
HFS implementation, the name “Library” would
be in one of the Macintosh’s eight-bit text encodings,
not in Unicode.)

An HFS or HFS Plus disk only has one catalog
file, not a separate catalog file for each subdirectory
on the disk. As such, it might be hard to find all the
files in a given folder, but it’s not. Because every file’s
search key starts with its parent folder ID, all files in
any folder wind up sorted together in filename order
in the B*-tree. It’s the binary equivalent of beginning
all your filenames with “AA” to make sure they rise to
the top of a list window, or “ZZ” to make them sink
to the bottom. ese search keys effectively organize
the giant catalog B*-tree by subdirectories, so listing
all files in a directory can be as easy as walking the
forward and backward links between index nodes at
the right level.

ese search keys are why Mac OS programs
traditionally specify files not by pathname, but
instead by parent folder ID and filename. All the
system must do is concatenate the two together and
search the tree to find the file. Traditional Unix pro-
grams look for files by full pathname, though. at
requires two searches through the tree: one to find
the CNID of the parent folder, and a second to find
the file once the OS can combine its name with its
parent folder ID to form the right search key. ere
are thread records in the catalog B*-tree, another kind
of record that helps the OS find a file or folder by its
CNID. read records are mandatory for all folders
and files in HFS Plus, and mandatory for folders but
optional for files in HFS. In practice, HFS files don’t

12 u

M
W

J 2
00

3.
05

.2
5

12 13

M
W

J 2003.05.25

have thread records (or accessible CNIDs) until code
requests one, usually by creating an alias to the file.

e double-search required to find a file by full
pathname may undergird the animosity that Apple’s
NeXT-heritage management feels towards HFS Plus.
It does not explain why Apple management contin-
ues to encourage developers to locate files by path-
name instead of directory ID and filename – and,
in fact, has worked to make directory ID values less
useful in Mac OS X. Perhaps Apple engineering man-
agement thinks that if the company eliminates HFS
Plus advantages one by one, people will eventually be
glad to use the less-capable UFS volume format that
the NeXT systems always used. So far, it hasn’t been
working, and the truth is probably more benign, as
we’ll explore later.

the catalog summary

When you assemble all these pieces in the proper
order, you get an HFS-style catalog file. e volume’s
static information in block 2 points to the beginning
of the catalog file. e catalog file itself starts with a
header node that describes the B*-tree structure, and
that’s followed by at least one and usually many more
nodes. If the records for every file on the volume
can fit in a single leaf node, then that’s all the catalog
file may contain (other than the header node). It’s
entirely possible for the root node – the one where
B*-tree searches start – to be a leaf node. However, as
soon as there are enough files to need more than one
leaf node, you need index nodes, and the normal tree
structure starts building.

Nodes are numbered by their position in the cat-
alog file. Once they’re created, the nodes themselves
never move even though their contents may com-
pletely change depending on what the B*-tree needs.
e file system implementation rebalances and re-
links the B*-tree by making nodes point to different
nodes, not by moving the node structure to a differ-
ent place within the catalog file. A new catalog file on
a new disk initially has room for hundreds of nodes
and thousands of file and folder records, but it can
grow to take up more disk space if necessary, though
that does fragment the file. A fragmented catalog file
is better than a ProDOS-style “catalog full” error.

To be sure, these data structures are complicated
to implement, and even experts have difficulty using
them correctly at times. Textbooks on the subject de-
scribe these kinds of binary trees as requiring lots of

debugging and careful attention to edge cases, inser-
tion, and deletion methods.

ey’re also hard to examine. It’s fairly easy
to look at ProDOS directories using a block editor
and understand what’s going on, but that’s because
ProDOS directory blocks are simple: all but five out
of 512 bytes in each block are file entries, so the for-
mat is pretty easy to grok. Any given 512-byte block
in an HFS-style catalog file, however, could be just
one-eighth of a B*-tree node. Records in that node (if
there are any at all) could be index records that point
to other nodes, leaf records with real file or folder in-
formation, or thread records that help resolve aliases.

e node you find may be anywhere at all in
the logical organization of the B*-tree, or it may be
empty and waiting re-use. To find out any of this, you
have to know what block of the node you’re looking
at, interpret all the data structures, and follow them
to other blocks and nodes. ere are probably fewer
than two dozen people on the planet who can look at
HFS Plus catalog blocks and know what they mean
without constantly referring to the documentation,
using massive amounts of psychotropic drugs, or
using a program that interprets the information for
you, like Norton Disk Editor+ in Symantec’s Norton
Utilities. e HFS documentation is slightly easier,
but not much.

It’s worth the pain to various versions of the
Mac OS because HFS and HFS Plus provide exactly
what Macintosh users and programmers need: a file
system that handles huge numbers of files and very
large disks without bogging down. e B*-tree in
the catalog file lets traditional Macintosh programs
find files very quickly. Pathname-based access takes
more searches through the tree, but other file systems
also have to find each directory in a pathname to
reach a file, and the B*-trees make sure each of those
searches is fast, even in really big directories. at’s
one heck of a win for giving up a format that’s easy to
see in a block editor, even if making it work did give
some of Apple’s best programmers extra gray hairs.

damage control

HFS and HFS Plus were designed for those benefits,
but the catalog tree described here has another rel-
evant benefit: it’s hard to kill. Sure, you can write a
buggy program that damages a catalog file beyond
repair, but it’s hard to do.

ere are more ways to damage a file than you
can count, particularly if you’re devious about it, but

t 11

http://developer.apple.com/technotes/tn/tn2022.html
http://developer.apple.com/techpubs/mac/Files/Files-99.html

M
W

J 2
00

3.
05

.2
5

12 13
M

W
J 2003.05.25

the most common damage to the catalog file is when
some code writes the wrong data to it. It could be as
small as a few errant bytes (say, an HTML tag that
got put in the wrong place in memory), or as nasty
as an entire allocation block from the wrong file.
Under Mac OS X, protected memory is supposed to
stop most of this: all of the code that writes blocks
directly, or writes to the catalog file at all, should live
only in the kernel’s address space. Nonetheless, lots
of people run Mac OS 9, and accidents do still hap-
pen even under Mac OS X. Maybe some data in the
cache wasn’t flushed to disk before a system crash or
kernel panic, or maybe an allocation block number
got corrupted so the wrong block got written to the
catalog file.

at’s going to cause problems, but probably not
as many as it could.

Again, look back at ProDOS directories. 507 out
of 512 bytes in each ProDOS directory block belong
to some file’s directory entry. If even one random
byte in such a block gets trashed, there’s more than
an 80% chance it will damage something. (Not every
byte in a directory entry is used or important, other-
wise it would be a 99.8% chance of damage.)

If it damages the wrong byte of a directory en-
try, you could lose access to that file. If it damages
the pointer to the next or previous directory block,
you could lose access to many other directory blocks
because the links are broken. On the other hand, if
the damage is changing an “A” in a file name to a “Z”,
or damages an unused byte, or changes the creation
time to an invalid date and time, you lucked out. It’s
still damage, but it doesn’t stop you from using the
directory or any of its files, though you might need to
rename any files with name damage.

e more bytes damaged, the greater the chance
you’ll lose something important. If some bad code
replaces a ProDOS directory block with a completely
different block (for example, a segment of a text file),
the files that directory block referenced may be lost
forever. If you lose the number of a ProDOS file’s key
block (whether it’s the only block in the file or a mas-
ter index block), you can’t reliably recover it. Nothing
else on the disk identifies that block as some file’s key
block.

Now think about a random byte of damage in an
HFS Plus catalog B*-tree node (by default, the same
as the default allocation block for HFS Plus). First,
you have to consider if the node is even in use in the
B*-tree. If not, then there’s not much chance of any
significant damage. If the node is in use, it may not

be full, so a big part of it may be empty and therefore
impervious to damage as well.

If the damage hits a record in a node, what kind
of node was it? If it was an index record, the damage
doesn’t affect the file’s real information in a leaf node
somewhere, just how the B*-tree search finds it, and
a disk repair program can find and fix the problem. If
it was a leaf record, then like ProDOS, some random
bytes could damage the entire entry and some might
just mess with the filename.

If a pointer to another node gets trashed, the
node is still in the catalog file, and almost any util-
ity can find it and figure out something’s wrong.
If an entire node gets wiped out, it only affects file
information if it was a leaf node. If it was an index
or thread node, a disk repair program will eventually
figure out that the catalog file contains leaf nodes
that aren’t properly linked in the tree and fix it. And
even if a leaf node gets stomped on, other HFS struc-
tures can provide disk repair programs with hints
that something is wrong – like index and thread
nodes that appear to point nowhere.

e very complexity and redundancy that makes
HFS-style catalogs difficult to understand provides
a significant level of protection against corruption.
Again, you can’t fix every problem without losing
some data, but it takes a particularly unlucky bit of
damage to lose a file – and especially a disk – beyond
recovery.

HFS and HFS Plus have always treated the
catalog as just another file. Unlike file systems like
ProDOS, the HFS catalog doesn’t occupy a specific
set of blocks on disk and therefore isn’t limited to
a certain size or number of entries. What’s more,
any HFS or HFS Plus implementation can read the
catalog file just like it reads any other file, so there’s
less special-case code. It’s a good idea, but to make it
work, HFS and HFS Plus store what you might call
the “directory entry” for the catalog file in their static
volume information, in the same place on every HFS
or HFS Plus disk.

e catalog file is one of five “special” files on
HFS Plus disks whose locations are kept that way.
HFS has only three special files per disk, as you’ll see.
To explain that, we must move beyond how HFS and
HFS Plus find a file’s directory entry and learn how
they find the file itself – the allocation blocks that
hold the file’s data.

14 u

M
W

J 2
00

3.
05

.2
5

14 15

M
W

J 2003.05.25

the nature of files

Not to resurrect an old debate, but there are two
kinds of information stored for every file: the infor-
mation in the file, and the information about he file.
e former is the file’s data; the latter is its metadata.
On HFS and HFS Plus disks, the difference is one of
storage. A file’s data is stored in a series of allocation
blocks assigned to the file, and its metadata is stored
in the file’s catalog leaf record.

HFS Plus catalog records for files and folders are
slightly different. Both contain the CNID of the file
or folder’s parent folder, as well as Unix-style permis-
sions, a creation date, modification date (for the file
or folder’s contents), backup date, and date of last
access. (In HFS and HFS Plus, a date is a number of
seconds since a fixed reference point, and therefore
really means a date and time, not just a day. In HFS,
these date-time values are in your local time; HFS
Plus stores all dates in Greenwich Mean Time except
for the volume’s own creation date. at’s still in local
time.

Each HFS Plus file and folder catalog record also
contains a text encoding “hint” as to what language
or script was in effect when the file or folder got
its name. Mac OS 8.1 through 9.2.2 lack extensive
Unicode support, so the operating system uses this
hint to help convert file or folder names to and from
Unicode in ways that don’t surprise and annoy you.

It’s entirely possible for one Unicode filename
to contain Chinese, Icelandic, English, and Greek
characters, among others. e Mac OS 9 Finder can-
not represent such a filename in one script system, so
the Mac OS uses this hint about the primary script
system at the time the file was named to help trans-
late the filename into something that makes as much
sense as possible, and vice-versa. It’s most effective
when you create a file under Mac OS 8.1 through
9.2.2, since Mac OS X has no trouble with full
Unicode filenames. Only Mac OS 9 and later allow
any programs to use full Unicode filenames, so some
programs still don’t support them (Microso Excel
v.X comes to mind). Even so, the hint is primarily for
older versions of Mac OS, not for application pro-
grams.

Both HFS and HFS Plus reserve thirty-six bytes
for “Finder info,” and as Apple emphasizes, “its for-
mat is not part of the HFS Plus [or HFS] specifica-
tion.” ese fields are the source of most of the Great
Metadata Arguments in Mac OS X, for they contain
the “Macintosh-specific” metadata: file type, creator

type, label, ID of a file’s comment in the desktop
database, and the ID of the folder where this file or
folder lived before you moved it to the desktop so the
“Put Away” command can work. You’ll also find the
Finder flags here, identifying whether a file is an alias,
or invisible, or has a custom icon, or is a stationery
pad, among other things. You can read about these
20-byte FInfo and 16-byte FXInfo records in
Apple’s developer documentation, if you wish.

Folder catalog records contain an additional val-
ue called the valence – the number of files contained
within that folder. Technically, HFS Plus is almost a
“flat-file” system because there is only one catalog file
per volume. Most people, however, agree that HFS
and HFS Plus are hierarchical because the catalog is
sorted by directory IDs first and filenames second.
Yet, since each folder is not cataloged in a separate
file, the file system needs some easy way to keep track
of how many files are supposed to be in each folder
so implementations don’t have to search the entire
tree to find out. at’s the valence. Before Mac OS X,
by the way, the system dropped to its knees and cried
if you tried to put more than 32,768 items in any
folder. If you ever want to use an HFS Plus disk un-
der Mac OS 9, don’t test this rule.

File catalog records have no valence, since files
don’t contain other files on disk, but they have all
the rest of the information described for folder cata-
log records. On the other hand, folders have no file
data – the catalog records for all files and folders are
in the catalog file, so a folder catalog record doesn’t
point to any allocation blocks on the volume. Files, of
course, have data, as that’s pretty much the point of a
file system. Each file catalog record points to both a
data fork and a resource fork for that file. Each fork
of an HFS or HFS Plus file is what other file systems
consider to be an entire file – one stream of bytes.
e reference to each fork contains the fork’s size in
bytes, the number of allocation blocks it uses, the
fork’s clump size, and its list of extents.

files and their blocks

Clumps? Extents? Ah, now we’re to the heart of the
matter. Designing a disk’s catalog structure is impor-
tant, but so is designing how to find the data blocks
for the files themselves. Some files systems are sim-
pler than others, but that leads to those pesky trade-
offs. Let’s observe.

As noted earlier, ProDOS tracks files very sim-
ply. Each file’s directory entry points to a key block

t 13

http://developer.apple.com/techpubs/mac/Toolbox/Toolbox-464.html
http://developer.apple.com/techpubs/mac/Toolbox/Toolbox-465.html

M
W

J 2
00

3.
05

.2
5

14 15
M

W
J 2003.05.25

that holds the entire file if the file is smaller than 512
bytes. If not, the key block is either an index block
that points to as many as 256 data blocks for the
file, or a master index block that points to up to 256
index blocks for really large files. (e three kinds of
files are called seedling, sapling, and tree files, in case
people in masks wielding copies of Beneath Apple
ProDOS kidnap you and demand that you join their
cult.)

When a ProDOS implementation allocates files
sequentially on a mostly-empty disk, these index
blocks and master index blocks wind up close to the
data blocks, so the drive head doesn’t have to move
back and forth much to read the file sequentially.
In fact, even on the old 64K Apple II, ProDOS tried
to keep a file’s current index block in memory for
even faster access and fewer disk head movements.
ProDOS uses a volume bitmap at the beginning of
the volume to know what blocks are available, and
it allocates free blocks sequentially where possible
to avoid wasting disk space. If a ProDOS volume
has lots of free space fragments when you create a
big file, the new file fills them in and becomes frag-
mented itself.

ProDOS’s fragmentation doesn’t come close to
the level of FAT, though. e MS-DOS file system is
named for its file allocation table, the method it uses
both for tracking free blocks and for assigning them
to files. We’ll use HFS-style terms to explain this,
so be warned that Microso’s documentation may
use other terms, like “clusters” instead of “allocation
blocks.”

In the first two versions of FAT, named FAT12
and FAT16 for the number of bits used to count
allocation blocks (allowing, respectively, 4096 or
65,536 allocation blocks on a disk), you’ll find the file
allocation table near the start of a volume. Each file
or folder’s directory entry points to one allocation
block on the disk, the first allocation block of the file.
at block’s entry in the file allocation table points to
the next allocation block for the same file, chaining
through the table until the pointer has a special value
indicating the end of the file.

For example, imagine a text file that occupies
four sequential allocation blocks, with the first one
numbered 1000. e file’s directory entry contains
the number 1000 for the file’s first block. Entry #1000
in the FAT contains the number of the file’s second
allocation block, #1001. e FAT entry for block
#1001 points to allocation block #1002, and the entry
for #1002 points to #1003. e entry for #1003 con-

tains a special marker meaning “end of file,” a num-
ber between 65,519 and 65,535 (0xFFF8 through
0xFFFF) in FAT16 with similar top-of-range values
for FAT12 and FAT32. A FAT value of zero means the
block is available and not part of any file or folder.

Bill Gates cooked up this scheme in the 1970s
in a five-day programming marathon long before
Microso made a disk operating system, but it’s stuck
around because it’s clever and easy to implement. e
same file allocation table tells you not only if a block
is in use but to what file it belongs, or at least to what
chain of blocks. Disk repair programs can find or-
phaned chains of data easily if you lose part or all of
a file. ere’s no sapling or tree files that keep track of
one file’s information separate from the catalog entry
or the file itself. It’s quick and efficient.

It’s also hard on drive mechanisms. FAT nearly
always stores the table near the front of the volume,
so every time an implementation needs to find the
next block in a file, it has to go back to the begin-
ning of the partition to get the information, then
back to the data area to read the block, then back
to the beginning for the next block number, and so
on. Caching helps tremendously, but it takes a lot of
RAM to cache an entire FAT structure, and even a
caching implementation has to write changes to disk
as they happen or you’ll have damaged disks in case
of a power outage or flip of the wrong switch. Some
implementations keep multiple copies of the FAT
structure at different points on the disk, but that’s just
trading off faster seek time in reading for more com-
plicated writes to update all the copies of the FAT.

FAT also fragments files rather badly. Every time
a file or folder needs a new block, it gets the first free
block in the file allocation table. Once you start de-
leting files, the next ones you add fill in all the gaps.
Unlike some other disk formats, FAT and ProDOS
allocate space for files one block at a time, actively
encouraging fragmentation rather than wasting any
disk space.

is, by the way, is why PC experts are so very
keen on disk defragmentation – under FAT12 and
FAT16 (but less so under NTFS and FAT32), it
can produce stunning disk performance improve-
ments. If some key Windows file expands by one
allocation block five or six separate times, it’s going
to wind up in five or six separate parts of the disk,
even if Windows reads it hundreds of times per day.
Optimizing or defragmenting the drive puts all those
blocks next to each other. If you’re not at the com-
puter so it’s not wasting your time, the process can 16 u

http://www.amazon.com/exec/obidos/ASIN/0912985054/gcsfIncorporated/
http://www.amazon.com/exec/obidos/ASIN/0912985054/gcsfIncorporated/

M
W

J 2
00

3.
05

.2
5

16 17

M
W

J 2003.05.25

drastically reduce stress on the drive and noticeably
improve performance.

at’s not so much the case for HFS and HFS
Plus.

the extent of the matter

HFS has always approached things slightly differ-
ently. e very concept of using a B*-tree instead of a
more space-efficient linked list shows that HFS’s de-
signers valued performance more than squeezing ev-
ery single byte off a disk, a strategy that has survived
the test of time. You can tell because FAT32 and
NTFS, Microso’s biggest new file systems, “borrow”
several concepts from HFS (to put it politely), includ-
ing using a catalog file stored as a tree structure.

Performance and efficiency aren’t always op-
posites. For example, most files, once created, never
grow. Sure, lots of files you’ll create definitely grow
aerwards – your documents, logs, mailboxes, data-
bases, and all those files under your direct control.
Yet look at how many files are on your hard drive.
We have a standard flat-panel iMac that hasn’t seen
much added to it, and its HFS Plus volume header re-
ports over 170,000 files and nearly 52,000 folders. We
certainly did not create that many files or folders us-
ing the machine. Most of them came from installing
the operating system and several programs. In today’s
Mac OS X-friendly package format, each application
contains several folders and usually dozens of files.

ose files won’t grow. ey’re fixed upon in-
stallation and will sit there until they’re updated, re-
placed, or deleted. It’s best for both performance and
efficiency to keep them as intact as possible. at way
the file system can record fragments instead of indi-
vidual allocation blocks. ere is absolutely no need
for HFS or HFS Plus to keep track of a few hundred
separate allocation blocks for one file if those alloca-
tion blocks are consecutive. It need only track the
number of the first block and the number of blocks
in a row that belong to the file.

HFS and HFS Plus call that concept an extent. It’s
defined just that way: a list of contiguous allocation
blocks identified by the first allocation block in the
extent and the number of allocation blocks in the ex-
tent. It therefore only takes two numbers to describe
a contiguous 2000-block fork starting at allocation
block 4256: the numbers 4256 and 2000. Were it not
this way, HFS would have to track 2000 separate two-
byte block numbers for the fork. HFS Plus would
have to monitor 2000 four-byte block numbers, a

waste of two full allocation blocks to replace two
numbers.

Other file systems didn’t follow this route back
in the 1980s because, frankly, it wastes disk space.
HFS and HFS Plus need contiguous fragments or this
strategy becomes worse than ProDOS or FAT. If one
file takes four non-contiguous allocation blocks, that
means four separate extents for HFS and HFS Plus,
and that’s bad for both performance and efficiency.

To get around that, both HFS and HFS Plus al-
locate storage in multiples of allocation blocks called
clumps. e default clump for an HFS Plus volume
may be something like sixteen allocation blocks, or
64KB of disk space, but each individual file or folder
may override that, using a larger clump or no clump
at all. Also, the clump is just a hint, not a require-
ment: implementations do not have to use clumps at
all, but they make for fewer extents. Each file’s catalog
record contains a clump size for both the data and
resource forks, and the volume header contains a de-
fault clump size for each kind of fork. Traditionally,
an implementation that uses clumps uses each fork’s
own clump size, and if it’s empty, it uses the volume’s
default clump size for that kind of fork instead.

How does it work? An implementation that uses
clumps allocates at least one clump’s worth of alloca-
tion blocks any time it allocates any space for a file
at all. On the disks we examined, most files had no
clump size set, and in fact, didn’t appear to be using
clumps: each file used only as many allocation blocks
as necessary. In fact, Apple’s implementations do allo-
cate by clumps, but when you close a file, any blocks
in the clump that the file didn’t used are returned to
the volume as free space.

Why not go clump crazy and leave the space al-
located just in case the file needs it later? e default
clump is too much for most files. 64KB is sixteen
allocation blocks on an HFS Plus disk, and if the file
never grows to use it, those blocks are wasted until
you optimize or defragment the disk. e extreme
example is still the PkgInfo file, deprecated though
it is. Spending 64KB of disk space on an eight-byte
file would waste almost as much space as using HFS
instead of HFS Plus.

Instead, Apple’s implementations of HFS and
HFS Plus keep track of where the last extent was al-
located and try to allocate from that point forward
to reduce fragmentation and, therefore, the number
of extents. When done writing to a file, any alloca-
tion blocks le in the last allocated clump are freed

t 15

M
W

J 2
00

3.
05

.2
5

16 17
M

W
J 2003.05.25

again, eliminating the possibility of small fragments
between every extent.

thy extents runneth over

HFS and HFS Plus do not attach a separate list of
extents to every file the way ProDOS does for data
block numbers. e good news is that if a contiguous
file never grows, it only needs one extent, period. e
bad news is that it could need as many as one extent
per allocation block, and that’s a lot to track.

Apple’s classic HFS implementation “prefers” to
track extents in groups of three, so each file’s catalog
record has room to track three of the file’s extents. As
long as the file is in three or fewer fragments, that’s
all an implementation needs to access the entire file.
If it needs more, HFS allocates more extent records
for the file in groups of three. Note that those are
extents records – places to track extents – and not
ranges of allocation blocks themselves. HFS stores
these extent-tracking placeholders in the second of
its three special files, the extents overflow file, some-
times (but less correctly) called just the extents file.
Like the catalog file, the extents overflow file is stored
as a B*-tree, and its location is specified in block 2,
not in the catalog file.

e extent overflow tree’s records are of only
one type: extent data records. ose are far simpler
than catalog nodes. An extent data record contains
the CNID of the file that owns the extents, a number
indicating whether the extents are part of the data or
resource fork, and the first allocation block number
within the file that these extents store. For example, if
the first three extents of an HFS file hold the first 108
blocks of the file, the first allocation block number of
the first extent overflow record is 109 – not allocation
block #109 on the disk, but the 109th allocation block
of the file. Aer that are the extents themselves: the
allocation block number on disk and the length of
the extent in blocks.

e key for an extent record in the extents over-
flow tree is the fork type (0 for data forks and 255
for resource forks) concatenated with the file’s CNID
and the starting allocation block of the extent. When
HFS rebalances the extents overflow tree, these keys
naturally group all data forks together on the “le”
side and all resource forks on the “right” side, helping
the search algorithm choose the right part of the tree
from the beginning. All extents for a given file then
sort together, followed by the extents within the file
sorted by position. It’s quite efficient.

ree extents isn’t much, though, so HFS Plus
increased its “preference” to eight extent records at
a time. Each HFS Plus file’s catalog record has room
for eight data fork extents and eight resource fork ex-
tents. Any extents beyond that per fork have to go in
the extents overflow file, still found by looking for its
information in block 2. e keys are the same as for
HFS, though for HFS Plus, block numbers are four
bytes each instead of two bytes. e tree sorts the
same way, retaining the efficiency in finding extents
by fork, file ID, and position within the file.

e default clump size for the extents overflow
file itself on an HFS Plus disk depends on the pro-
gram that initialized it. On a 40GB iMac hard disk,
the clump size for the extents overflow file is 3MB,
enough room for 768 nodes with around 50 records
in each clump. On an original 5GB iPod, though, the
extents overflow file clump size is 4MB, enough for
1024 nodes per clump. e problem is fragmentation:
the volume header only has room for eight extents
per special file, and you start getting into weird terri-
tory if you try to find extra extents that belong to the
extents overflow file by looking in the extents over-
flow file. Operating systems therefore try pretty hard
to keep those files from fragmenting too much by us-
ing big clump sizes. e iPod’s clump size is probably
larger, even though it’s a smaller volume, because the
folks formatting the iPod expected it to contain more
fragmented files.

Incidentally, defragmenting a volume eliminates
this problem: programs like PlusOptimizer and
Norton Speed Disk rearrange the blocks on disk so
that every file has one and only one extent. A freshly-
optimized volume therefore has a nearly-empty
extents overflow file, because no file on the disk
needs more than one extent to hold all its blocks.
Optimizing also defragments the special files, mak-
ing the disk ready for tens of thousands more files
and fragments before any of the special files need
new extents of their own.

Most files need only a few extents anyway, so
you may not notice any performance difference aer
defragmenting or optimizing an HFS or HFS Plus
disk. Even if a file has eight or more extents, the disk
head moves far less than it does under FAT, where
the drive has to seek back to the beginning of the
disk to find the next block of every file, at least when
the entire file allocation table is not cached in RAM.
ProDOS also requires lots of disk head movement
unless a file’s current index block, and perhaps the
master index block for tree file, are cached in RAM. 18 u

M
W

J 2
00

3.
05

.2
5

18 19

M
W

J 2003.05.25

HFS and HFS Plus generally defeat these prob-
lems with clump and extent-oriented disk allocation.
Even a system log file that expanded regularly had
only three extents on our test system. As long as the
file’s catalog record is cached, the disk head never has
to seek more than twice to find every block in that
log file. is approach fragments free space instead of
data. It may therefore bog down on a nearly-full vol-
ume because every new file would then have to fit in
the gaps, fragmenting them far worse than the other
files on the disk.

However, most people will trade slower perfor-
mance on the last files added to a full volume to get
fewer fragments and better performance on the other
99% of that volume. Earlier file systems were de-
signed for much smaller and slower disks, and there-
fore placed a premium on using every possible block
of disk space. HFS and HFS Plus are willing to leave
a few blocks unused, not only on the disk but also in
the catalog and extents overflow files (in the form of
unused records) to gain performance.

where to start?
e catalog and extent overflow trees are well-de-
signed structures for fast searching to find the infor-
mation and location of any file on the disk. So how
do you find the catalog and extents overflow files?
As noted, you can’t look in the catalog file unless you
know where it is, so you obviously can’t find it by
looking in the catalog file. You could find the extents
overflow file in the catalog file, if Apple had wanted
it that way, but if it were a regular file instead of a
“special” file, it might show up in some dialog boxes,
or worse, you might find ways to try to delete it.
Deleting the extents overflow file on an unoptimized
disk would be unspeakably bad.

at’s why those two files are “special” files,
stored in a specific, unchanging location on each
HFS or HFS Plus volume. e details are a bit differ-
ent between the two file systems, as HFS Plus rectifies
a few irregularities that made HFS a bit more com-
plicated than necessary. Consider an 800KB floppy
disk, from back in HFS’s heyday. ose disks are eas-
ily small enough to use 512-byte allocation blocks,
so you’d think an 800KB floppy disk would have
1600 allocation blocks. (By the way, we mean “disk”
here and not “volume” – floppy disks are too small to
have partition maps. And floppy disks use only HFS:
the smallest possible HFS Plus volume is 32MB, the

point where HFS allocation blocks must grow be-
yond 512 bytes.)

In fact, floppy disks have 1594 allocation
blocks – six blocks on the disk are not part of the
HFS allocation block scheme. So where did they go?

HFS volume structures

e first two 512-byte blocks (block 0 and block 1)
of every bootable Macintosh volume are Mac OS
boot blocks. ey contain information about the boot
volume, and in some cases, machine-language 68K
or PowerPC code that can help load the Mac OS.
Macintosh hardware rarely uses the boot blocks, and
“New World” machines – the original iMac and later
machines that don’t keep large parts of the Mac OS
in ROM – don’t use the boot blocks at all, to our
knowledge. We’ll cover what those machines use in-
stead of boot blocks later.

We’ve noted that the third 512-byte block of
every HFS or HFS Plus volume, block 2, holds in-
formation about the volume itself. Like ProDOS,
it’s always in block 2 so file system implementations
always know where to start. For HFS, block 2 is the
master directory block, and it includes data such as
the volume’s creation and modification dates, the
number of allocation blocks on the volume, how
big each allocation block is, the volume’s name, the
clump sizes for special files and the default clump
sizes for other files, the count of files and folders on
the disk, and the sizes and extents of the two HFS
special files – the catalog file and the extents overflow
file. e first two bytes of block two are the HFS sig-
nature: “BD”, as in “big disk.” (e original MFS block
2 held the MFS signature “rw”, for designer Randy
Wigginton.) e master directory block also contains
the volume attributes, a set of up to sixteen flags that
tell implementations important things about the vol-
ume, such as whether or not it’s locked in soware,
was unmounted properly, if its blocks shouldn’t be
cached in RAM, and so on.

Immediately aer the master directory block
in block 3, you’ll find a map of the volume that
uses a single bit for each allocation block. Just as in
ProDOS, if a single bit has value “0,” the correspond-
ing allocation block is free; if the value is “1,” the
corresponding allocation block is in use somewhere.
is map that uses bits to describe the volume is, un-
surprisingly, the volume bitmap. Each 512-byte block
contains 4096 bits, far more than the 1600 physi-
cal blocks on an 800KB floppy disk, so one block is

t 17

http://developer.apple.com/techpubs/mac/Files/Files-102.html

M
W

J 2
00

3.
05

.2
5

18 19
M

W
J 2003.05.25

enough for the floppy’s volume bitmap. Larger disks
need more blocks, up to a maximum of 16 blocks for
an HFS volume with 65,536 allocation blocks. e
size of an HFS volume bitmap is determined dur-
ing initialization and cannot be changed. In theory,
the volume bitmap can be anywhere on the volume,
since the master directory block contains the volume
bitmap’s first block number, but all of Apple’s HFS
implementations put it in block 3.

at’s four of the six missing blocks. e other
two are at the end of the disk. e last 512-byte block
of any HFS volume is reserved because, according
to Apple, it’s used during the CPU manufacturing
process. e next-to-last 512-byte block contains
the alternate master directory block – a faint copy
of the master directory block stored exclusively to
help disk repair programs. It’s not a true copy of the
master directory block: it’s only updated when one
of HFS’s two special files – the catalog file or extents
overflow file – grows larger. It doesn’t contain an ac-
curate count of files or folders or modification times,
but since any repair program must find the special
files, the alternate master directory block caches their
location and size.

ose are the last two, accounting for all six
missing 512-byte blocks, and explaining why most
800K floppy disks have 1594 allocation blocks. Some,
however, have 1593, in another bit of useless trivia
we’ll explore shortly.

HFS plus volume structures

e larger HFS Plus file system improves this design
but doesn’t reinvent it. For starters, every 512-byte
block on an HFS Plus volume is part of an allocation
block. If you could have an HFS Plus 800KB floppy
disk, it would have 1600 512-byte allocation blocks,
but the ones containing 512-byte blocks used by HFS
Plus itself are marked “used” in the volume bitmap.

HFS Plus, however, calls its volume structure
the volume header instead of the master directory
block. It includes most of the same information, but
with some refinements based on a decade of seeing
HFS used and abused in real situations. As noted
previously, the HFS Plus volume header contains the
lastMountedVersion field to let code know if a
newer or older version of HFS Plus has been writing
to the disk. ere’s space for the last date and time a
disk repair program checked the volume, a list of text
encodings used on the volume to help Mac OS 8 and
Mac OS 9 implementations that don’t use Unicode

directly, and more volume attributes, such as whether
the volume reuses CNID values or whether journal-
ing is enabled.

As with HFS, a faint copy of the volume header
is stored in the next to last 512-byte block, updated
only when the size of one of the “special” files chang-
es. e volume header contains the fork informa-
tion – size and first eight extents – for five special
files. We’ve already discussed the catalog and extent
overflow files, the only two special files HFS Plus
shares with HFS. Now it’s time to look at the other
three, but we’ll start with one that’s not.

finding free space
Remember how HFS and HFS Plus keep track of
where the last extent was allocated as a hint for
where to allocate the next extent? When a disk is new,
the hint points to the huge area right aer the cata-
log and extents overflow files. As you allocate new
extents, the hint keeps moving forward through the
free space. When files get deleted, however, the hint
does not move backward. Trying to fill in all the free
space from deleted files would promote fragmenta-
tion, and both HFS and HFS Plus prefer a volume
with some wasted space to one that’s packed full but
slow to use.

Once the hint goes so far as to point to the end
of the volume, HFS and HFS Plus can either report
the disk as full, or scavenge for the free space le by
deleted files. at raises a different problem: how
does HFS or HFS Plus know what allocation blocks
are free? e catalog record for each file contains
the file’s first extents – three of them for an HFS file,
eight for an HFS Plus file – and the extents overflow
file contains records of all extents that didn’t fit in
catalog records. Walking the entire catalog and ex-
tents overflow trees therefore describes every alloca-
tion block on the volume that’s in use. All the other
blocks must therefore be available.

at’s way too much work to find a 4KB alloca-
tion block for a new alias or URL clipping, and that’s
why there’s a volume bitmap. e file system imple-
mentation powers through at least 32 bits of the map
at a time, scanning for any zeroes. As soon as it’s
found a single zero, it’s found a free allocation block.

HFS and HFS Plus differ on where to find the
volume bitmap, though. You already know that HFS’s
volume bitmap almost always starts in 512-byte
block #3 and takes a maximum of sixteen blocks.
HFS Plus, on the other hand, uses 32 bits for block 20 u

http://developer.apple.com/technotes/tn/tn1150.html#AllocationFileConsistencyCheck

M
W

J 2
00

3.
05

.2
5

20 21

M
W

J 2003.05.25

numbers instead of the 16-bit numbers HFS allows,
so a single HFS Plus disk may have almost 4.3 bil-
lion allocation blocks. Even at one bit per block,
that’s 512MB of disk space just to store the volume
bitmap – if you have a 2TB disk. You probably have
a smaller disk and don’t need a volume bitmap that
large. Also, the design decision to leave the volume
bitmap out of any HFS allocation block complicates
the code in ways Apple didn’t want to carry over to
HFS Plus.

erefore, in HFS Plus, the “volume bitmap” is
actually the third special file, called the allocation file.
Its directory record is in the volume header with the
directory entries for the catalog and extents overflow
files. It’s stored in allocation blocks, just like every
other file. An implementation or an optimizer may
deliberately fragment the allocation file, so that (for
example) the bits describing the second half of a
huge volume are stored in the second half of the vol-
ume, perhaps keeping the drive head from moving so
much.

Similarly, since the volume bitmap is in a file and
not of fixed size, it’s theoretically possible to grow or
shrink an HFS Plus volume. If your disk has a free
partition aer an HFS partition you want to grow,
utility soware can (at least theoretically) combine
the two partitions and grow the allocation file to rep-
resent all the new space. HFS disks have a fixed-size
volume bitmap that’s almost always at the beginning
of the disk, immediately followed by the catalog file,
preventing the volume bitmap from any chance of
growing.

In essence, putting the volume bitmap in a file
instead of in a fixed area of the disk makes such utili-
ties somewhat straightforward, even if few of them
exist today. e same features under HFS would re-
quire rewriting the entire disk and would drive most
programmers mad, or close enough that you couldn’t
tell the difference.

culling the block herd
ese behind-the-scenes HFS and HFS Plus struc-
tures have logical names: the catalog file, the extents
overflow file, the allocation file, the volume header.
It makes the complicated structure a little easier to
follow.

You knew that wouldn’t last. Aer all, this is
technology.

Any bad blocks on a disk should be spared, or
excluded from general use. (A bad block, by the

way, is any block the disk can’t read or write reliably,
indicated when the drive returns the dreaded “I/O
error” for that block. It’s not like “bad” blocks hang
around the beginning of the catalog file smoking and
drinking vodka.) As late as System 6.0.8, though, the
Mac OS refused to use any volume if it found any
bad blocks on it during initialization. Although the
code involved mostly affected floppy drives, a single
bad block ruled out the entire disk (and again, we
mean disk – floppies don’t have partitions or parti-
tion maps.)

System 7 was a bit more lenient with question-
able disks. If initialization turns up a bad block on
a disk, the Disk Initialization Manager goes back
through the disk, writing a test bit pattern to every
block and reading it back. If any of the blocks re-
turn errors or don’t give back the same information
they got, the system spares all the blocks on the bad
block’s entire physical track. You know this is hap-
pening because the traditional “Erasing…” dialog box
is followed by one that says “Re-verifying disk…”, but
that’s all the feedback you get. e system then marks
all the allocation blocks containing these bad blocks
as “used” in the volume bitmap.

Any disk repair program – even the sanity check
the Mac OS performs on volumes that weren’t prop-
erly unmounted – may see such blocks as a mistake
and try to mark them as free. To prevent that, spared
blocks must be marked as if they were allocated.
ey’re said to belong to the bad block file, but that’s
wrong: they’re not part of any file. “Bad block file” is a
colloquial term to refer to the concept of bad blocks
marked as used on the disk. It’s not a real file, it’s not
a special file – in fact, it’s not a file at all.

A true file of bad blocks would be easier to track,
but it would tempt too many programs to pretend it
was a real file. A bad block “file” couldn’t be defrag-
mented, of course, because it’s the physical media
that’s bad. Since HFS had no room for more “special”
files, a bad block file would have to look like a regular
file, with all the same potential for disaster – seeing it,
trying to rename it, trying to delete it, and so on.

On the other hand, it’s not enough just to mark
bad blocks as “used” in the volume bitmap (or the
allocation file). Any disk repair program, all the
way from Mac OS 9’s mount-time check through
Mac OS X’s fsck and bigger fish like Disk First Aid
and Norton Disk Doctor, would rightly treat blocks
marked as “used” but not part of any file as an error,
and mark them as free.

t 19

M
W

J 2
00

3.
05

.2
5

20 21
M

W
J 2003.05.25

In fact, the HFS Plus specification requires this
kind of check when mounting any volume that was
not unmounted cleanly. Preferably starting with an
empty volume bitmap, any HFS Plus implementa-
tion must first mark as used every allocation block
used by the volume structures and the “special” files.
It then has to walk the catalog tree and mark every
block in use by any file’s catalog extents, and then do
the same for all extents in the extents overflow file,
followed by more of the same for one more special
file if it exists. When done with all that, any blocks
still marked as “free” probably are. is is the chatter
your disk makes for a few minutes when you reboot
aer a crash or kernel panic. Apple says you can’t skip
this step unless the volume was unmounted cleanly.

is free space reclamation for blocks that are
marked “used’ but don’t belong to any file would de-
feat the purpose of sparing if implemented that way.
Clearly, bad blocks must be part of some HFS or HFS
Plus structure. So, as usual, the engineers invented
a workaround. Each bad block is not only marked
“used” in the volume bitmap, but also added to an ex-
tent in the extents overflow file. Disk repair programs
see that the block belongs to an extent and is marked
as used in the volume bitmap or allocation file, so
they leave it alone.

e big utilities, though, would treat an extent
not assigned to any file as a sign of damage. e
CNID number ties extents to files, you may recall.
CNID numbers less than 16 are reserved for HFS
itself, so all extents for bad blocks look like they
belong to a file with a CNID of 5. Existing disk utili-
ties should have recognized that CNID as belonging
to the system and le its extents alone. Just in case,
though, Apple documented this use, and also set a
previously-reserved bit in the volume attributes to
signal that the volume contains spared blocks.

HFS Plus could have changed this system, add-
ing a “special” file for bad blocks like the allocation
file that holds the volume bitmap, but in the end, it
wouldn’t have provided any advantages. Disk util-
ity programs already knew and supported the HFS
scheme, so the code was already written. Since the
HFS disk organization requires using one extent for
every bad block that’s not contiguous with another
bad block, any more than nine such extents would
still require using the extents overflow file to track
bad blocks. Switching to a special file would have
added more code to disk utilities for no appreciable
benefits, so Apple didn’t do it.

As for that useless trivia we promised? When
sparing blocks on an 800K floppy disk, System 7 and
later versions also subtract one allocation block from
the disk’s total. at’s because the System 6 Finder
and earlier versions copy disks block-by-block, not
file-by-file, if the two disks both contain exactly 1594
allocation blocks – the size of an HFS 800K floppy
disk, as described earlier. If there’s even one bad
block on a disk of 1594 allocation blocks, the system
changes count of allocation blocks in the master
directory block to 1593 – leaving 512 bytes of disk
space unaccounted for – to prevent the Finder from
doing a block-by-block disk copy.

the remaining special files
e HFS Plus volume header does point to the first
few extents of a few more “special” files, but you’ve
probably never heard of them. One has never been
used, and one is only for operating systems other
than Mac OS 9.

the startup file

e “New World” machines may not use the tradi-
tional boot blocks, but they still need to find infor-
mation on how to load the operating system. For
Mac OS 9, it’s stored in the “Mac OS ROM” file in the
blessed System folder. at file could be anywhere on
the disk, but the Open Firmware in all “New World”
machines contains enough of an HFS and HFS Plus
implementation to find it and read it.

In Mac OS X, the equivalent file is nominally
“/System/Library/CoreServices/BootX”,
but that’s not quite where the information comes
from. Mac OS X is built on top of Darwin, an open-
source operating system that may or may not have
access HFS or HFS Plus disks. Darwin certainly can
boot from other file systems. No one wants to force
Darwin to include a full HFS Plus implementation in
every kernel on every hardware platform just to find
the BootX file in case it’s on an HFS Plus disk.

e design engineers knew that finding a boot
file on an HFS Plus disk is far more difficult than
for simple file systems like FAT or ProDOS – find-
ing the catalog tree, searching it, finding the file, and
then reading it, including reading and searching the
extents overflow tree if the file is fragmented. at’s a
big pile of code to find a single file.

at’s why HFS Plus includes the option for a
startup file as a “special” file, with its information 22 u

http://developer.apple.com/technotes/tn/tn1150.html#AllocationFileConsistencyCheck
http://developer.apple.com/techpubs/mac/Files/Files-371.html

M
W

J 2
00

3.
05

.2
5

22 23

M
W

J 2003.05.25

stored in the volume header next to the catalog file
and extents overflow file. As with the other “special”
files, the volume header has room for up to eight
extents of a startup file. Finding it is therefore just as
simple as with ProDOS or FAT.

An implementation finds the volume header in
the block 2 of the partition, and then finds the infor-
mation for the startup file starting in the 432nd byte
of that block. at provides the startup file’s size in
both bytes and allocation blocks, as well as its first
eight extents. All code has to do to find the file is go
find the first extent and read it, followed by any other
extents. Apple notes that a startup file may have more
than eight extents, but since that would require find-
ing the others by searching the B*-tree in the extents
overflow file, “doing so defeats the purpose of the
startup file.”

the attributes file

e final HFS Plus “special” file doesn’t exist. It could
exist, mind you, and implementations must be pre-
pared to deal with it if it shows up one day, but in
the five years since HFS Plus debuted in Mac OS 8.1,
there hasn’t been a single Macintosh disk with an at-
tributes file unless someone made it by hand to test
some code.

HFS (and, before it, MFS) had always been
loners in the world of file systems thanks to their
support of forks. e concept of bundling multiple
streams of data as a single file was so unusual that
for many years, it earned the ire of programmers on
other platforms who didn’t want the concept of a
file expanded beyond opening, reading, writing, and
closing. e journals and message boards were full
of complaints that standard code for copying files
would leave out resource forks, that resource forks
didn’t transfer “properly” because they were two data
streams instead of one, and other such slurs.

ese complaints were absurd, as even a mo-
ment’s thought would show. Complaining that mul-
tiple forks “breaks” existing code for handling files
is like complaining that JPEG2000 “breaks” existing
JPEG code, or that the AppleWorks 6 file format
“breaks” AppleWorks 5 code. For some reason, these
self-appointed guardians of technical consistency de-
cided that files, alone among all computer constructs,
could never evolve beyond the 1960s. It was mainly
Unix protectionism. Unix had evolved around treat-
ing everything as a single-forked file – devices, files,
printers, everything – and its partisans didn’t want to

have to rewrite thousands of programs to deal with a
more advanced concept of “file.” But since Unix was
considered the standard for operating systems, Unix’s
refusal to allow forked files kept most other operat-
ing systems from evolving, too. e Mac OS was not
among the laggards, and it was reviled for it.

By the mid-1990s, that was starting to change.
Microso’s NTFS, the file system introduced with
Windows NT 3.5 in 1993 or so, supports multiple
streams of data per file, but Microso calls them
streams instead of forks. NTFS allows for any number
of forks per file, and Windows NT uses one of those
streams to store what would normally be file meta-
data – security information like owners and permis-
sions, for example. It’s a pretty good idea: by not
limiting the size of metadata to fixed-size directory
structures (or catalog leaf records as in HFS), the
operating system can add more information about
each file with any revision. Older versions of the OS
just ignore the new information. With both HFS and
NTFS supporting forked files, even the maintainers
of FreeBSD and Linux were considering the issue by
1997.

Apple’s engineers certainly had this broader ac-
ceptance and flexible metadata management in mind
when designing HFS Plus. By default, HFS Plus is
like HFS: each file’s catalog entry describes a data
fork and a resource fork. However, just as the extents
overflow file contains extents that don’t fit in the
catalog entry, the attributes file is supposed to contain
forks that don’t fit in the catalog entry.

e attributes file contains a B*-tree, just like the
catalog and extent overflow files. ere are only two
defined kinds of records in the tree. e first kind is
a fork record that functions like the one for each spe-
cial file or for each fork in a catalog leaf record – the
size of the fork in bytes and allocation blocks, and
the first eight extents for the fork. e second kind
of record is an extents record, with up to eight more
extents for any fork that doesn’t fit in the first eight
extents. In essence, the attributes file is supposed to
be a combination catalog and extents overflow file for
any extra fork for any file on the disk.

It’s not.
Apple never defined the search keys for records

in the attributes file, so it’s impossible to actually
implement the attributes file right now. Apple only
published enough information so that, if the attri-
butes file does exist on some disk, disk utilities can
scan it and know what allocation blocks belong to
extents described within it. at way, such blocks

t 21

http://www.mackido.com/Innovation/FileForks.html

M
W

J 2
00

3.
05

.2
5

22 23
M

W
J 2003.05.25

aren’t accidentally marked “free” when repairing a
volume or scanning one that was unmounted badly.
It’s not enough information to find a fork because
there’s no search key. HFS Plus intends to implement
extra forks by naming them, but even if you have the
name of the fork, you don’t know how to search for it
in the tree.

HFS Plus was being implemented for Mac OS
8.1 during the same time Apple was reorganizing its
engineering management to include engineers and
management from the recently-purchased NeXT
Soware, Inc. at the same time other Apple engineers
were writing the first HFS Plus code. At that time,
thanks to interest in NTFS and even Linux develop-
ers, multiple forks seemed an important future direc-
tion for file systems. In the years since, the disdain
that the former NeXT managers carry for forked files
(and for most file system concepts that were designed
aer 1976) has become much clearer than it was at
the time.

Apple’s current engineering direction pushes
both internal and third-party developers to avoid re-
source forks at all, preferring simple, Unix-endorsed
single-stream files. HFS Plus’s capability to store
multiple forks in any file is entirely unimportant
to current Apple management, and not likely to be
implemented in the foreseeable future.

the HFS plus future
For a time and half a time, it looked like Apple’s
current engineering management acutely wanted
to kill HFS Plus. Technical Note #2034, Mac OS X
Programming Guidelines, was based on the internal
“ten commandments” that a senior Apple executive
imposed on the company’s own soware develop-
ers. Two of those guidelines were to prefer filename
extensions to real file types and creator types, and to
avoid using resource forks. ose two pieces of meta-
data are the main differences most users would see
if they were using Unix File System (UFS) partitions
instead of HFS Plus partitions. e understandable
conclusion is that Apple wants everything to run on
UFS, so it’s discouraging anything HFS Plus has that
UFS does not.

at still may be a long-term goal, but it looks
less likely with the passing years. At first, the turned-
up nose crowd inside and outside of Apple painted
HFS Plus as a nasty compromise that carried through
all of the odious features of HFS while tacking on
security features, Unicode names that can’t be typed

from the divinely-inspired command line, and more
forks rather than fewer. ey said it was just an inter-
im file system to satisfy all those ridiculous Mac OS
programs until they could be rewritten to use a
proper Unix file system.

It hasn’t turned out that way. Apple’s urges to
prefer filename extensions have been resoundingly
rejected by the majority of Macintosh developers,
and HFS Plus continues to succeed for the same
reasons did: it’s very fast at finding files and keeps
files in as few extents as possible. Arguably, the best
file systems let the drive transfer data as quickly as it
can, and that means large contiguous blocks, not tiny
fragments spread over the disk. HFS Plus’s extents
handle that well.

Unfortunately, it makes tests like the recent
“Mac OS X Filesystem Performance Comparison”
by Jason Titus misleading at best. Titus used the
open-source IOZone “filesystem benchmark” to test
Mac OS X on HFS Plus, Journaled HFS Plus, regular
HFS, UFS, and an alpha version of the Linux ext2 file
system. He noted such results as “64KB block writes
are 10%-20% faster” on Journaled HFS Plus disks
compared to HFS Plus disks, or that HFS is “up to
10% faster (usually for 64KB block writes – seems to
be a weakness of HFS Plus).” He’s also impressed with
the alpha-level ext2 filesystem, noting it “has not yet
been optimized” and “could greatly improve aer a
1.0 release.”

But what Titus is actually testing is the imple-
mentation of these file systems, not the design of
the data structures themselves. You now know that
the performance of any disk depends on fragmenta-
tion, as well as the size of the transfer requests and
the buffer sizes that IOZone tests. Was the HFS Plus
volume optimized at the time of testing, or at least
freshly initialized and empty? Were the other vol-
umes configured the same way? A new file on an
empty disk of almost any file system gets stored in
what HFS would call a single extent.

IOZone, however, tests with multiple processes
running at once, and with different transfer sizes. If
two programs simultaneously tried to create 400KB
files by writing 4KB at a time to an HFS Plus disk,
the first free extent would go to the first program, the
second free extent to the second program, and so on,
immediately fragmenting both files. at’s why pro-
grams are supposed to write the entire 400KB in one
chunk, so the operating system can do its best work.
at’s not always practical, as with database opera-

24 u

http://jason.tiltastech.com/performance/Mac_OS_X_Filesystem_Performance_Comparison.html
http://www.iozone.org/

M
W

J 2
00

3.
05

.2
5

24 25

M
W

J 2003.05.25

tions, but to think that IOZone’s test is completely
typical is misleading.

What’s more, if all the files are unfragmented,
IOZone’s test essentially boils down to disk perfor-
mance. e same drive should read the same 400KB
from disk at the same speed, no matter what file
system implementation makes the request. e only
difference is whether the 400KB is fragmented or
not, and that’s not something IOZone either controls
or tries to test. IOZone tests parameters like the
disk cache that a file system really doesn’t control.
Titus’s tests show how the disks he used react under
IOZone’s type of testing, not any general truths about
HFS, HFS Plus, ext2, or UFS.

We know from its design that HFS and HFS Plus
are very fast at finding file information so the disk
can read or write the information, at the expense of
extra disk activity when it has to rebalance one of
its B*-trees. We know that other file systems might
be a little faster when finding files by pathname, but
the Mac OS never did that until Mac OS X, so it’s no
wonder HFS and HFS Plus don’t focus on pathnames.
We know that HFS and HFS Plus files are typically
less fragmented than in some other file systems, and
that usually boosts performance.

And we know that other file systems have bor-
rowed the same concepts HFS introduced in 1986:
FAT32 and NTFS both use trees instead of linked
lists for directories. e most buzzworthy new file
system of the past several years is ReiserFS, a fast
Linux file system with journaling and extreme space
efficiencies from storing small parts of multiple files
in single physical blocks. ose are two of ReiserFS’s
three big-name features. e third? It uses B*-trees,
just like HFS did over fieen years ago.

ReiserFS’s developers say, “Balanced trees are
more robust in their performance, and are a more so-
phisticated algorithmic foundation for a file system.
When we started our project, there was a consensus
in the industry that balanced trees were too slow for
file system usage patterns. We proved that if you just
do them right they are better. We have fewer worst-
case performance scenarios than other file systems
and generally better overall performance. If you put

100,000 files in one directory, we think its fine; many
other file systems try to tell you that you are wrong to
want to do it.”

HFS Plus may not be as hot as ReiserFS, and it’s
not surprising that the command-line crowd refuses
to acknowledge the millions of HFS disks using B*-
trees years before anyone had written a single line
of ReiserFS code. Even so, Apple now finds itself the
owner of a file system that not only uses the hottest
file system storage techniques with full support for
both Unix-style permissions and Mac OS metadata,
but also finds that it’s been tested in the field for over
five years with solid results, is extensively document-
ed, and rarely causes problems for anyone.

Not even engineering dogma is enough to sur-
render those advantages. Apple has already added
journaling to HFS Plus, and more improvements
or features may appear in the next major version of
Mac OS X, code-named “Panther,” to be shown at
WWDC 2003. Implementing new file systems with
B*-trees and little fragmentation is complicated;
Apple not only has it done, but has had it in the field
for over five years.

e company may continue to push programs
to not rely on HFS Plus features, since the ability to
work with lots of disks makes an OS stronger, not
weaker. Also, since Mac OS X tracks Finder informa-
tion like file types and creator types on non-HFS vol-
umes, and that information must be stored in extra
files on those file systems and not in catalog entries,
using HFS Plus features slows performance on non-
HFS Plus disks. ere’s something to be said for us-
ing the least-common denominator in disk-intensive
applications.

Most applications aren’t opening and closing
files every second, though. Most people want to find
files fast, read them fast, and write them reasonably
fast. ey also don’t want to have to use a disk opti-
mizer every week to avoid noticeable performance
degradation. HFS Plus delivers all these components
in spades. It works well, people who initially rejected
its concepts have copied it, and we think it’s here to
stay.

Copyright © 2003, GCSF, Incorporated.
All Rights Reserved.

Contact us via www.macjournals.com.

Staff: Matt Deatherage, Justin Seal,
Nathaniel Irons, Jerry Kindall,
John C. Welch, John Gruber

t 23

www.macjournals.com

	may 25, 2003
	HFS and HFS Plus complete

	MacCyclopedia™: The HFS Primer
	block party
	counting blocks
	partition erudition

	a simple file system
	enter hfs
	the joy of trees
	Figure 1 – The “Guess the number” tree
	Figure 2 – A smaller tree with a larger range
	keeping your balance
	Figure 3 – The tree, rebalanced

	It’s full of stars!
	Figure 4 – An HFS-style B*-tree

	the catalog file
	what is a node?
	Figure 5 – node structure

	storing the nodes
	the vermicious cnid
	The value of IDs
	the catalog summary
	damage control

	the nature of files
	files and their blocks
	the extent of the matter
	thy extents runneth over

	where to start?
	HFS volume structures
	HFS Plus volume structures

	finding free space
	culling the block herd
	the remaining special files
	the startup file
	the attributes file

	the HFS Plus future

		www.macjournals.com
	2003-06-02T08:10:48-0500
	El Reno, OK
	GCSF Production

